

CIVIS Electronics Week

EMU Low Voltage Plans

S. Lusin
University of Wisconsin

ME 1/2 OSC Projotype

IEV System Parameters

396 CSC chambers total

Includes ME 4/1

CSCs have on-detector electronics

- Cathode FEBs
- Anode FEBs
- ALCT- anode trigger logic
- Low voltage distribution board

Each CSC dissipates slightly more than 100 W

Heat removed by water-cooled copper plate

Total power required for chambers is 43 kW Two LV feeds supplied to each chamber

- Digital: 3.7 kA total
- Analog: 2.6 kA total

AVCEDO INVISYSTEM Oxerview

MOBSKIES

LVDB design is finalized, fully integrated. Pilot run of 30 preproduction boards delivered to FAST sites.

LVDB Production

Parts have been ordered, most have been delivered PCBs have been delivered

Expect assemblers to begin fabrication over next few weeks

ACDOWRS. Parameters

3-phase, 400 Hz transformers with full-wave rectifiers and filter capacitors mounted on detector

Supply has no output regulation, will depend on downstream linear regulators on LVDB for regulation, ripple suppression

Have investigated design using 2 transformers per 60-degree sector, 9 (12) CSCs

Component cost for LV supply for 60-degree sector is ~\$ 1K

AC-DOSupply Oyerview

400 Hz AC would be supplied by motor-generators located in region of low magnetic field.

Transformers would be mounted on the endcap walkways or in towers.

- Transformer would be operated in a derated mode
- May require some magnetic shielding

Rectifiers and filters would be located at transformer

IBV System Skills

400 Hz 3-phase AC-DC prototype design

- Built and tested at PSL
- Supplies 7.5 V at 100 amps

AC-DC system magnetic field simulations

- POISSON for 2-D simulation
- OPERA for 3-D (V. Klioukhine)

Magnetic field tests at CERN

- First round 11 Feb. 02
 - Objective was to determine if transformer operation in an ambient field of 1.2 kG is possible for prototype 3-phase transformer
- Second round of tests 12 Mar. 02

Constructed complete power supply

- Dual transformers, water cooled, industrial enclosure
- Being shipped to CERN

TOSCA Model Description

From V. Klioukhine

Total Stray Fields Outside the Yoke

Total stray fields outside the yoke in a vertical plane

From V. Klioukhine

One-quadrant eross-section

Largest fringe field will be over YE1 region

JDP 12-7-99 CMS 5185_090

Magnetic REA Results

Post-Processor 7.1

itesi Vlagnei

Transformer test setup

Transformer in magnet, core ~7cm away from each pole face to prevent magnet iron from acting as part of transformer magnetic circuit

Gaussmeter probe location

Magnetic Rield Hest Results

Magnet current	B nominal	B local	Load voltage	Primary current
32.5 A	0.50 kG	0.93 kG	7.26 V	14.0 A (p-p)
49.9	0.75	1.39	7.27	15.0
66.6	1.25	2.51	7.26	15.0
88.7	1.30	2.66	7.27	15.5
89.8	1.35	2.68	7.26	15.5
93.1	1.40	2.78	7.20	17.0
99.8	1.50	2.97	6.93	24.2
106.4	1.60	3.16	6.18	34.0

Testing AC. Characteristics

R= 0.5 ohm

Mag. Test Summary

Magnetic REA for L3 kG

Field directed along axis of windings:

Mag Rield Test: Conclusions

Results of magnetic field tests of AC-DC converter demonstrate that operation of transformer-based LV system in an ambient field of 1.3 kG is possible

- May be able to optimize transformer core design to operate directly on disk periphery without additional magnetic shielding
- Should be able to take advantage of transformer orientation to increase magnetic field tolerance

In principle, the prototype 3-phase transformer we tested could be used as is for the EMU low voltage system

Currently building prototype LV supply box to model entire LV supply

EW Powersupply

Prototype enclosure design

EV Power Supply, front

Shows clamshell construction, cable shield, strain reliefs.

Keyhole screw mounts

Strain reliefs

LV Power Supply, rear view

Shows cooling connections, uses flare fitting to hose-barb union (not shown)

LV Power Supply, plan view

Distribution & connector board

3-phase bridge rectifier

Cooling plate

Connector board ...

3-phase, 4wire input connector

Thermal circuit breaker

Distribution bus bars

